二次函数(quadratic function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
基本定义
一般地,把形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
交点式为 y=a(x-x1)(x-x2)(仅限于与x轴有交点的抛物线),
与x轴的交点坐标是A(X1,0)和B(x2,0)。
注意:“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别。 [1]
历史
大约在公元前480年,古巴比伦人和中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。公元前300年左右,欧几里得提出了一种更抽象的几何方法求解二次方程。
7世纪印度的婆罗摩笈多是第一位懂得使用代数方程的人,它同时容许有正负数的根。
11世纪阿拉伯的花拉子密 独立地发展了一套公式以求方程的正数解。亚伯拉罕·巴希亚(亦以拉丁文名字萨瓦索达著称)在他的著作Liber embadorum中,首次将完整的一元二次方程解法传入欧洲。
据说施里德哈勒是最早给出二次方程的普适解法的数学家之一。但这一点在他的时代存在着争议。这个求解规则是:在方程的两边同时乘以二次项未知数的系数的四倍;在方程的两边同时加上一次项未知数的系数的平方;然后在方程的两边同时开二次方(引自婆什迦罗第二)
函数性质
1.二次函数的图像是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。对称轴为直线
。
[2] 对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的
对称轴是y轴(即直线x=0)。
2.抛物线有一个顶点P,坐标为P
。当
时,P在y轴上;当
时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;|a|越小,则抛物线的开口越大;|a|越大,则抛物线的开口越小
4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0)(可巧记为:左同右异),对称轴在y轴右侧。
5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0, c)
6.抛物线与x轴交点个数:
时,抛物线与x轴有2个交点。
时,抛物线与x轴有1个交点。当
时,抛物线与x轴没有交点。
7.当
时,函数在
处取得最小值
;在
上是减函数,在
上是增函数;抛物线的开口向上;函数的值域是
。
当
时,函数在
处取得最大值
;在
上是增函数,在
上是减函数;抛物线的开口向下;函数的值域是
。
当
时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax²+c(a≠0)。
8.定义域:R
9.值域:当a>0时,值域是
;当a<0时,值域是
。
[6]
奇偶性:当b=0时,此函数是偶函数;当b不等于0时,此函数是非奇非偶函数。
周期性:无
解析式:
⑴a≠0
⑵若a>0,则抛物线开口朝上;若a<0,则抛物线开口朝下。
若Δ>0,则函数图像与x轴交于两点:
若Δ=0,则函数图像与x轴交于一点:
若Δ